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Viscoelastic simulations of stick-slip and die-swell flows
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SUMMARY

Numerical solutions of viscoelastic flows are demonstrated for a time marching, semi-implicit Taylor–
Galerkin/pressure-correction algorithm. Steady solutions are sought for free boundary problems involv-
ing combinations of die-swell and stick-slip conditions. Flows with and without drag flow are investigated
comparatively, so that the influence of the additional component of the drag flow may be analysed
effectively. The influence of die-swell is considered that has application to various industrial processes,
such as wire coating. Solutions for two-dimensional axisymmetric flows with an Oldroyd-B model are
presented that compare favourably with the literature. The study advances our prior fixed domain
formulation with this algorithm, into the realm of free-surface viscoelastic flows. The work involves
streamline-upwind/Petrov–Galerkin weighting and velocity gradient recovery techniques that are applied
upon the constitutive equation. Free surface solution reprojection and a new pressure-drop/mass balance
scheme are proposed. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our earlier work involved Newtonian test case studies of planar and axisymmetric stick-slip
and extrudate swell problems. Conditions with and without addition of drag flow were
addressed, via a semi-implicit Taylor–Galerkin/pressure-correction finite element method
(STGFEM) [1]. With an industrial flavour taking into account slip effects, the STGFEM was
also used to compute solutions relevant to wire coating processes [2]. The present study,
involving stick-slip and die-swell flows with elastic effects, is considered for the Oldroyd-B
model with increasing Weissenberg (We) number. Hence, from a realistic fluid viewpoint, this
benchmarking exercise is meant as a proving stage to the methodology, somewhat upstream of
actual industrial flows. Creeping stick-slip flow (SSF) and die-swell flow (DSF) for axisymmet-
ric and annular systems are explored and contrasted against theoretical solutions from the
literature [3–7].
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In such SSF and DSF, abrupt changes in boundary conditions arise, when velocity
conditions at the wall adjust to stress conditions on the free surface. Following Crochet and
Keunings [8], the Deborah number (De) is quoted as three times the We value for slit flows
and four times for circular dies, the scale factors representing the ratio of maximum wall shear
rate to average shear rate in fully developed entry flow.

These benchmark problems, of stick-slip and die-swell, are an excellent vehicle to address a
phased study of such free-surface moving-boundary viscoelastic flows, prior to lunching into
more complex and demanding problems. Our aim in this work is to establish our favoured
fractional-staged approach within this flow regime. The benchmarks here are of the Maxwell/
Oldroyd type, the choice being made for calibration purposes of the methodology with
contrast to the theory and literature. The limitations on Weissenberg number solutions
reported here, are a consequence of the model employed alone, and not the methodology. This
is standard for the most proven schemes, currently accepted as state-of-the-art. On this point,
we refer to our comments below and on other benchmarks for additional evidence, for
example, under contraction flows past cylinders, Matallah et al. [9]. Our subsequent work in
this area has progressed onto industrial-scale regimes of high shear and strain rates. This takes
us into more complex wire-coating flows, with free-surfaces and drag flow, that calls upon
more advanced constitutive modelling, with controlled extensional response through Phan–
Thien/Tanner (PTT) models. There, Weissenberg numbers are not so limited and reach values
of O(103), see also Matallah et al. [10].

In the context of viscoelastic flow, with differential constitutive models, to achieve highly
elastic solutions it is important to adopt specialized techniques, suitable to this task. To this
end we employ consistent streamline upwinding and velocity gradient recovery. The particular
treatment of the hyperbolic constitutive equation was initially presented in the STGFEM
context by Carew et al. [11], who followed the pioneering investigations of Brookes and
Hughes [12], and Shakib [13]. This deals with the consistent application and generalization of
streamline-upwind/Petrov–Galerkin (SUPG) weighting to the problems of current interest. To
attain still further accuracy and capture additional stability, velocity gradient recovery was
advocated in Matallah et al. [9] The novelty of this method for viscoelastic incompressible
flows lies in its combination of Taylor–Galerkin and pressure-correction schemes (see Hawken
et al. [14]), with consistent streamline upwinding and velocity gradient recovery aspects (see
also Szady et al. [15]). Further detail on this methodology and its variations is provided in
Matallah [16]. Elsewhere, with this emerging methodology, we have solved complex fixed-
boundary problems extensively. This has included three-dimensional flows in Baloch et al.
[17,18], Hassager et al. [19], Ding et al. [20]; unsteady flows are reported in Tamaddon-Jahromi
et al. [21,22]; and wire-coating flows are addressed in Mutlu et al. [23,24] and Matallah et al.
[10,25].

The most competitive current methods in the viscoelastic area fall either into coupled (EVSS
or EEME type) or fractional-staged approaches. The latter, our favoured option, offers the
distinct advantage of tractability for large-scale complex flows, as large system matrices may
be avoided in the solution process. In this categorization of schemes, we do not overlook, the
transient issue, the aspect of continuous as opposed to discontinuous stress interpolation,
lower levels of stress interpolation, or finite volume stress discretization. These scheme variants
can be viewed as sub-classes. In the articles of Matallah et al. [9], and Wapperom and Webster

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595



SIMULATION OF VISCOELASTIC FLOWS 541

[26,27], these approaches were placed into context, and the full power and competitive level of
this fractional-staged finite element formulation is brought to bear. Hence the current
methodology is shown to be equally competitive with other approaches on accuracy and
stability grounds, determined by reaching competitive levels of limiting Weissenberg numbers.
Our motivation in the current articles is to take this methodology forward to deal with
free-surface moving-boundary viscoelastic flows within this fractional-staged view of the
system and its associated solution formalism.

In this article, we first present the setting of the governing equations and the details of the
numerical scheme adopted. We point to the methodology applied successfully to free surface
location and adjustment that maintains consistency. As surfaces are projected, special surface
treatment with appropriate adjustments is required to ensure consistency throughout the
solution procedure. For DSF, this allows for a study of variation in surface swelling profile as
a function of increasing Weissenberg number. Theoretical results on swell and against other
numerical solutions confirm the quality of present solutions for DSF. Comparison likewise is
established for SSF against the theory. Following specification of the four base flows studied
in Section 5, we document our results in Section 6, taking these in comparative form. Stick-slip
reveals flow behaviour with increasing We, without the freedom of surface location. The
impact of superimposing drag flow is investigated subsequently. The study then passes onto
DSF, making the two-way comparison with SSF and against die-swell/drag flow. Our
conclusions are recorded in Section 7. Converged solutions with Oldroyd-B are recorded up to
a critical level of Weissenberg number, We lim, beyond which instability sets in. For short-
geometries and the streamline free-surface location method, the SSF limit reaches We lim of 1.7
(to within 0.1), whilst for DSF solutions are obtained up to We=1.0. These measures are
improved upon with respect to the pressure-drop surface assessment method (see below) and
the use of longer geometries.

2. BACKGROUND ON STICK-SLIP AND DIE-SWELL FLOWS

2.1. Stick-slip flow

Comparisons for SSF are made against the theoretical Newtonian solutions, of Trogdon and
Joseph [3], who used a matched eigenfunction expansion method to calculate axisymmetric
stick-slip and die-swell solutions for low-speed viscous flow with small surface tension in a
two-dimensional cylindrical co-ordinate system. Agreement is found to be quite satisfactory.

Much of the work reported in the literature for SSF concentrates on the planar context. For
present purposes and in order to extend to annular wire-coating situations, our interest here
lies in studying axisymmetric, leading to annular configurations. Hence, strictly for planar
SSF, we have the following to provide some guidance only.

Marchal and Crochet [28] performed calculations at high De for Oldroyd-B and Maxwell
fluids using a mixed finite element method. An inconsistent streamline-upwind (SU) method
was used to discretize the constitutive equation, and each element of the mesh was divided into
bilinear sub-elements. This method is recognized as being overdiffusive, and only first-order
accurate due to its variational inconsistency.
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With Oldroyd-B fluids, Coleman [29] performed calculations for a range of Deborah
numbers utilizing a boundary integral solution method. The maximum possible De lim for stable
converged solutions was found to be 2.6.

Owens and Phillips [30] presented solutions for a spectral domain decomposition method
with an Oldroyd-B fluid. The spectral method required comparatively fewer degrees of
freedom (dof) to describe the problem than its finite element counterparts. Deborah numbers
up to 0.51 gave steady solutions, a De lim similar to that found by Rosenberg and Keunings [31]
with a streamline integration method.

Similarly, Baaijens [32] conducted numerical stability investigations with a discontinuous
Galerkin method using a PTT model, incorporating monotonicity enforcement. The
monotonicity was established by use of an implicit/explicit time discretization scheme, which
led to convergence at high Deborah numbers. Of note is the fact that, the De lim of 5.9 was
achieved with stick length, L1=10 units, for a stick:slip length ratio of 1/4, whilst for a ratio
of unity, De lim=1.85. In addition, for an UCM model and longer geometry, where L2=L1=
40 units the De lim of convergence was 10. One should note here, that generally, considerably
larger limits on Deborah numbers are commonly reported with PTT models, above those for
the Maxwell/Oldroyd class.

Our results for axisymmetric SSF compare quite respectfully in form with those cited above.

2.2. Die-swell flow

The literature on die-swell studies offers the following. Tanner [4] presented an elastic-fluid
theory for die-swell in long dies that provides guidance as to swelling ratios. Various finite
element method (FEM) implementations for creeping die-swell Newtonian flows were dis-
cussed by Nickel et al. [33].

Chang et al. [34] were able to apply collocation and Galerkin methods to the slit and circular
die swell flows for a generalized Maxwell fluid. The limits of Weissenberg number reached for
slit and circular dies were 0.05 and 0.2 respectively.

Caswell and Viriyayuthakorn [5] presented Newtonian and viscoelastic finite element
formulations, with a classical displacement (or u-�-p) method. For the viscoelastic calculations,
a single integral Maxwell model and backtracking techniques were employed. Free surface
profiles were estimated using a local uniform flow assumption nodes. Successful convergence
to a Deborah number limit of 1.0 was achieved.

For Maxwell fluids, Bush et al. [6] presented planar and axisymmetric extrusion flow
analyses using both finite element and boundary integral methods. This involved computation
along streamlines. Limits of De for the finite element implementation were 1.5. The boundary
integral formulation produced a lower De limit of 0.75 for the fine mesh employed, though this
was increased to 1.0 upon further reducing mesh size by one half.

Similarly, predictions were reported by Crochet and Keunings [7], who documented results
for an UCM fluid using a mixed finite element method with slit, circular and annular dies.
These authors computed solutions to De lim=0.75 for slit flows and to De lim=0.67 for circular
DSF. Crochet and Keunings [8] published further work on the slit flow with UCM fluids,
concentrating on the importance of mesh refinement with respect to solution accuracy. This
provided De lim=1.25 for slit flows and their finest meshes. The use of an Oldroyd-B fluid,
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allowed Crochet and Kennings [8] to increase De lim for circular DSF beyond that reached with
the Maxwell fluid, by as much as four times (De lim=4.5). In this study, both upstream and
downstream lengths were 16 times greater than the channel radius.

Subsequently, Bush [35] made a detailed study into circular free-jet swelling behaviour for an
Oldroyd-B model, with varying polymer concentration, represented through the viscosity
fraction � (see Section 4.4.2). Comparisons between this viscosity fraction (0.01���1.0) and
maximum possible Deborah number achieved (2�De lim�5), were made upon a fine mesh.
Likewise, Clermont and Normandin [36] provided an alternative stream tube method employ-
ing an integral constitutive model for the same problem. The stream tube method, roughly
doubled the De values reached by Bush [35], though we note, that such a method lacks
generality, being limited to streamline flows without recirculation.

3. GOVERNING EQUATIONS

For viscoelastic flow in the absence of body forces, the mass conservation and momentum
equations are:

� ·U=0 (1)

�Ut=� ·T−�U·�U−�p (2)

where variables velocity (U), pressure (p), and extra-stress tensor T are defined over space and
time, with temporal derivative represented as (Ut) and density (�). The Cauchy stress tensor is
defined through a unit tensor � as

�= −p�+T

The Oldroyd-B model, attributed to Oldroyd [37], defines the relationship between the
extra-stress T and rate of deformation tensor D, �iz.

T+�1T
�

=2� [D+�2D
�

] (3)

where

T
�

=Tt+U·�T− (�U)† ·T−T·�U (4)

D=
1
2

(�U+�U†) (5)

T
�

is the upper-convected derivative of T, Tt is the convected derivative of T, D is the rate of
strain tensor, D

�
is the upper convected derivative of D, and material constants of shear

viscosity �, relaxation time �1 and retardation time �2, matrix transpose ‘†’.
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Equation (3) contains D
�

, with second-order spatial derivatives of the velocity field. For
computational convenience, Crochet and Keunings [8] suggested reorganizing the extra-stress
tensor T, following Holstein [38], �iz.

T=T1+T2 (6)

T1+�1T
�

1
=2�1D (7)

T2=2�2D (8)

Here, T2 is the Newtonian solvent stress with solvent viscosity �2; the elastic solute is T1 with
solute viscosity �1. The relationship between viscosity, relaxation time, and retardation time is

�=�1+�2 and �2=
�1�2

�

In this work the ratios of �1/�=0.889 and �2/�=0.111 are taken throughout.
Substitution and reorganization of the above into Equation (2), yields

�Ut=� ·T1+2�2� ·D−�p−�U ·�U (9)

It is convenient to non-dimensionalize the system of equations employing characteristic length
L and velocity V. Consequently, dimensionless quantities are taken of

r*=
1
L

r, Z*=
1
L

Z, U*=
1
V

U, p*=
L

�0V
p, T*=

L
�0V

T

t*=
V
L

t, �*=L�,
D

Dt*
=

L
V

D
Dt

, �1*=
V
L

�i, � i*=
1
�0

�i

where �0 is a reference viscosity, and index i=1, 2. For brevity, we may subsequently discard
the * notation and assume this by implication. Taking elastic solute stress as �, for an
Oldroyd-B model, the system of Equations (1), (7) and (9), may be expressed non-dimension-
ally in the form:

� ·U=0 (10)

ReUt=� ·(�+2�2D−p)−ReU ·�U (11)

We�t=2�1D−�+We [� ·�U+ (�U)† ·�−U ·�� ] (12)

where Re=�LV/�0, and We=�1V/L are non-dimensional group numbers, termed the
Reynolds number, and Weissenberg number We, respectively.
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4. NUMERICAL SCHEME

4.1. Discretization

The Taylor–Galerkin/pressure-correction finite element scheme [1,2,9] (as mentioned above)
was the semi-implicit time-stepping procedure implemented to solve the Navier–Stokes
equations (11) and stress equation (12). Taylor–Galerkin based algorithm is a fractional step
method, that semi-discretizes first in the temporal domain, using Taylor series expansions in
time, then a pressure-correction procedure to extract a time stepping scheme of second-order
accuracy. A spatial Galerkin finite element method is used to complete the discretization. The
flow domain is assumed to be discretized into a triangular mesh, with piecewise continuous
linear (pressure) and quadratic (velocity) interpolation functions applying in such elemental
regions. The three distinct fractional stages per time step the Taylor–Galerkin algorithm are:

Stage 1a

2Re
�t

(Un+1/2−Un)= [� ·(�+2�2D)−ReU ·�U−�p ]n+� ·�2(Dn+1/2−Dn) (13)

2We
�t

(�n+1/2−�n)= [2�1D−�+We(� ·�U+ (�U)† ·�−U ·��)]n (14)

Stage 1b

Re
�t

(U*−Un)= [� ·(2�2D)−�p ]n+ [� ·�−ReU ·�U]n+1/2+� ·�2(D*−Dn) (15)

We
�t

(�n+1/2−�n)= [2�1D−�+We(� ·�U+ (�U)† ·�−U ·��)]n+1/2 (16)

where the time step index over the interval [n, n+1] is denoted by n. The velocity and stress
components are calculated at the half time step (n+1/2) from data gathered at level n after
Stage 1a and for Stage 1b, the intermediate velocity and stress component, U* and T*, are
solved for the full time step.

The two step predictor–corrector procedure provides the initial velocity and pressure fields,
non-divergence-free Un+1/2 and U* fields. The corresponding mass matrix governed equations
are solved iteratively by a Jacobi method, using five iterations at most [14]. This may be
implemented efficiently on an element-by-element basis, removing the system matrix storage
overhead. Similarly, the stress equation is solved in Stages (1a and 1b) only.

Stage 2

�2(pn+1−pn)=
2Re
�t

�U* (17)
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Using U*, via a Poisson equation over the full time step interval [n, n+1], the pressure
difference (pn+1−pn) is calculated by a direct Choleski decomposition method. This is
efficient for such a structured system, being sparse and banded.

Stage 3

2Re
�t

(Un+1−U*)= −�(pn+1−pn) (18)

Using U* and pressure difference (pn+1−pn), the non-divergent velocity field Un+1 is
determined by Jacobi iteration. Galerkin weighting is adopted for all but the constitutive
equation, that assumes the general SUPG form of (1+�U ·�)	i, as discussed above (see
Carew et al. [11]).

Velocity and stress interpolation is accomplished via quadratic basis functions 	j over
six-noded triangular elements, whilst linear basis functions 
k with three-noded triangular
elements are used for pressure, �iz.

(�rr, �rz, �zz, ���)n= (T1j, T2j, T3j, T4j)n	j (19)

(Vr, Vz)n= (U1j, U2j)n	j (20)

(p)n= (Pk)n
k (21)

The convention of repeated indices implies summation throughout; index j is associated with
vertex and mid-side nodes, whilst k is related to vertex nodes only.

After employing Equations (19)– (21), over domain � with non-overlapping finite element
sub-regions, the fully discrete forms of Stages 1–3 become:

Stage 1a

�2Re
�t

M+
�2

2
S
n

(Un+1/2−Un)={− [�2S+ReN(U)]U−BT}n+L†Pn (22)

2We
�t

M(Tn+1/2−Tn)= [2�1M(L+LT)−{M+WeN(U)}T+We{N1(T)L+ (N1(T)L)†}]n

(23)

Stage 1b

�Re
�t

M+
�2

2
S
n

(U*−Un)={− [�2S+ReN(U)]U−BT}n+1/2+L†Pn (24)

We
�t

M(Tn+1−Tn)= [2�1M(L+LT)−{M+WeN(U)}T+We{N1(T)L+ (N1(T)L†}]n+1/2

(25)
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Stage 2

�t
2Re

K(Pn+1−Pn)= −LU* (26)

Stage 3

2Re
�t

M(Un+1−U*)=LT(Pn+1−Pn) (27)

where variables notation references nodal vectors at time tn for velocity (Un), stress (Tn) and
pressure (Pn), intermediate non-solenoidal nodal velocity vector (U*); and matrices of mass
(M), momentum diffusive (S), pressure stiffness (K), advection (N) and divergence/pressure
gradient (L).

The matrix notation employed above is defined as follows:

Mij=
�

�
	i	jd�

S=
�S11 S12

S12
† S22

n
(S11)ij=

�
�

�
2

�	i

�x1

�	j

�x1

+
�	i

�x2

�	j

�x2

+
	i	j

r2

�
d�

(S12)ij=
�

�

�	i

�x1

�	j

�x2

d�

(S22)ij=
�

�

��	i

�x1

�	j

�x1

+2
�	i

�x2

�	j

�x2

�
d�

N(U)ij=
�

�
	i	kUk�	j d�

N1(T)ij=
�

�
	i	kTk	j d�

B=
�B1−B3 B2 0 B3

0 B1 B2 0
n

(B1)ij=
�

�
	i

�	j

�x1

d�

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595
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(B2)ij=
�

�
	i

�	j

�x2

d�

(B3)ij=
�

�

	i	j

r
d�

Kmn=
�

�
�
m�
n d�

L= (L1, L2), (Lm)in=
�

�

n

�	i

�xm

d�

where d�=r dr dz ; i, j, k=1, 2, 3; m, n=1, 2; x1=r, x2=z.
In this formulation, there are various subtleties associated with boundary condition treat-

ment of U* and (pn+1−pn), see Townsend and Webster [39], and Hawken et al. [14]. The
natural conditions that emerge on the spatial gradient of (pn+1−pn) may be taken as
homogenous with a suitable selection of condition for U*. The time-stepping procedure is
monitored for convergence to a steady state via relative increment norms (using both
maximum and least squares measures) subject to satisfaction of a suitable tolerance criteria,
taken here as 10−6. Typical �t is O(10−4).

4.2. Streamline-upwind/Petro�–Galerkin (SUPG) method

The SUPG method has been shown to provide consistency uniformly in mesh size, while still
retaining the advantages of enhanced stability and accuracy over Galerkin methods. For
viscoelastic studies, the SUPG method has proved of great use in systems of high We, under
the dominant, presence of the convective terms. By combination of the scalar multiplicative
element dependent factor of the advective operator with the Galerkin test function, construc-
tion of the streamline upwinding weighting function is achieved:

w=	i+�hU ·�	i (28)

On applying the above weighting function to each term in the differential equation, the
consistent SUPG method emerges. A detailed study of the SUPG method for viscoelastic flow
was made by Carew et al. [11], where the specification of the spatially dependent scalar
parameter �h is provided.

4.3. Gradient reco�ery

This technique is used in conjunction with the SUPG scheme, and involves recovery of velocity
gradient fields (prior to solution of the stress field equations). This enhances the coefficients of
the constitutive equation at the specified time stage, by smoothing �u. A number of local and
global techniques can be used to capture smooth highly accurate discrete representations of the
velocity gradient fields from the underlying finite element gradient approximations, produced
at the element level. These continuous representations are compatible with the primary
variables of the finite element solution, i.e. velocity, pressure, and stress.
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The local direct method is the particular gradient recovery scheme chosen for this work (see
Matallah et al. [9]), due to its attractive local compact properties and the avoidance of large
matrix storage. Velocity gradient components generated for each element are local in nature,
and therefore discontinuous from one element to another. For each quadratic triangular
element, superconvergence at the mid-side nodes holds (Levine [40,41]). Velocity gradients are
expressed in the form

Gk
e(x, t)=

�u
�xk

(x, t) (29)

where k=1, 2. Approximating the velocity vector, u(x, t) by finite element interpolation on
each element renders uh

uh(x, t)= �
N

j=1

	j(x)uj(t) (30)

where N represents the number of nodes per element. By combining Equations (29) and (30),
a direct calculation of the velocity gradients is possible thus:

Gk
e,h(x, t)= �

N

j=1

�	(x)
�xk

uj(t) (31)

This procedure yields nodal gradient values per element. Direct averaging over elements for
each nodal value then generates unique values, around which the quadratic continuous
interpolation is based.

4.4. Free surface location

4.4.1. Numerical prediction. By implementing a free surface location method via a modified
iterative technique, the extent of extrudate swell in a DSF may be determined (for example, in
industrial casting processes). The following three boundary conditions may be defined on a
free surface (Crochet et al. [42]):

�rnr+�znz=0 (32)

trnr+ tznz=S
� 1

�1

+
1
�2

�
(33)

trnz− tznr=0 (34)

with variables specification of radial velocity (�r), axial velocity (�z), components of the unit
normal to the free surface (nr, nz), surface force normal to the surface (tr, tz), principal radii
of curvature (�1, �2) and surface tension coefficient (S).
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A typical iterative approach for modelling a free surface flow involves enforcing the
boundary conditions of Equations (33) and (34), see Reference [42]. The normal velocity is
then calculated by Equation (32), which is used to describe the shape of the upper extrudate
boundary for DSF (Figure 2). In the free jet flow, the distance from the axis of symmetry is:

r(z)=R+
��

z=0

Vr(z)
Vz(z)

dz (35)

where R is the tube radius. In this paper, the integral in Equation (35) is evaluated by
Simpsons quadrature rule, thus providing an estimate of the extrudate shape. Free surface
location is enforced every m (say 20) time steps of the field equations. Essentially, this leads to
a form of sub-time steps over which boundary conditions and internal consistency is
established.

In this manner, the location of the free surface may be specified, from which the swell and
swelling ratio may be calculated. Comparison is made with Tanner’s prediction [4] for swelling
ratio (�=Rj/R, Rj is jet radius, R is tube radius, see Figure 2) and those from prior finite
element calculations catalogued in Silliman and Scriven [43].

For superior accuracy on swell estimation, we have found it a most useful ploy to
supplement the above streamline location method with a pressure-drop/mass balance surface
assessment. This may then be invoked as a first estimate of the surface position at each We
setting, commencing from a stick-slip scenario. Finally, we may perturb and validate the
surface location calculated by use of the streamline method. Such an approach was found to
yield considerably more stable and accurate solutions than achievable with the streamline
technique alone. The pressure-drop/mass balance scheme is derived from the observation that
a functional relationship holds at each level of We, between pressure-drop from the die at
centreline and the swell generated. This may be observed from the profile patterns formed by
pressure-drop (�p) at centreline and swell (�) for both SSF (without swell) to DSF (with
swell). Using fitting procedures to samples our pressure-drop results, and with knowledge of
the theoretical swell predictions, we empirically postulate the following relationship,

�=
�p(z, We)

f(We)
(36)

where

f(We)=10.68−0.133We−2.425We2 (37)

From such a relationship, the swell may be estimated numerically once the pressure-drop from
the die has been computed. In this manner, one may proceed through an iterative or
time-stepping process until a steady scenario is derived and consistency is ensured. This is
rather reminiscent of the Caswell and Viriyayuthakorn [5] procedure. To achieve the very outer
limits of Weisenburg number solutions, we have also used additional stress stabilization. For
example, on the largest meshes and beyond We=1.5, we have first solved each We stage, with
vanishing surface extra-stress enforced. Once the surface has been estimated, these conditions
may be relaxed.
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4.4.2. Theoretical prediction. Theoretical predictions for free surface location in an extrusion
process are compared during the scope of this investigation. Tanner [4] gives an elastic fluid
theory of die-swell, which is based upon the principle of instantaneous elastic strain recovery
after the fluid exits the die. The theory may be expressed as follows:

�=0.13+
�

1+
1
2

S r
2�1/6

(38)

where, Sr=recoverable shear and Sr= (N1/2�rz)w, N1= first normal stress difference, �rz=
shear stress, *w=values evaluated at die wall.

For a Poiseuille entry flow of an Oldroyd-B model

N1=�zz−�rr=2�1�1� 2, N2=�rr−���=0, �rz= (�1−�2)�

so that

Sr=
�1�1� w
�1+�2

=�De

where �=�1/(�1+�2), De=�1� w, � w=shear rate at die wall. This is the result we are able to
utilize for comparison purposes below.

4.5. Surface solution reprojection

Nodal co-ordinates after the die-exit are modified to compensate for the free surface adjust-
ment. Consequently, the velocity solution must be projected onto the new surface position (see
Figure 1). This is accomplished as follows: two sample points are selected for each element at
the mid-side (r1, z1) and vertex (r2, z2) node on the new surface positions, respectively. The total
velocity magnitude, Vtotal, at the mid-side node of the boundary element must be maintained
throughout the projection, where

Figure 1. Free surface adjustment.
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Vtotal=�Vr
2+Vz

2 (39)

For the new free surface position, the tangent angle � to the boundary is

�= tan−1�r2−r1

z2−z1

�
(40)

Finally, the updated Vr� and Vz� velocity components must satisfy

V �r=Vtotal sin(�) (41)

V �z=Vtotal cos(�) (42)

This procedure is only necessary when surface adjustment is made after a time step-step,
within the looping strategy commended above. Vertex nodes may be similarly adjusted to
conform with forward oriented elements.

5. PROBLEM SPECIFICATION

5.1. Stick-slip flow (SSF)

The upstream and downstream parts of the die are classed as two distinct regions for stick-slip
flow (SSF), with separate boundary conditions. The stick-slip condition assumes no-slip
boundary conditions at the channel walls, adjusting to slip boundary conditions on exiting the
die. Figure 2(a) illustrates these stick-sip conditions, where tangential velocity and shear stress
vanish at the free surface, as well as the normal stress and cross-stream velocity at the outlet.
An inlet Poiseuille flow and cylindrical co-ordinate system are applied within the analysis.
Symmetry about the flow centreline is taken, permitting solutions to be sought over the upper
half plane alone. Note that this implies a vanishing radial velocity at the fluid centreline z1z2.
Dimensionless quantities involve a channel length and radius of one, and jet length of two.
Here, channel radius and maximum inlet velocity are taken as characteristic scales of length
and velocity respectively. Creeping flow conditions are approximated with a finite small
Reynolds number of 10−4, computing solutions upon a relatively fine mesh of 18×54
elements, 4033 nodes and 9111 dof (see Figure 3(a)), used in our prior mesh calibration studies
of Reference [1]. With similar structure, longer geometries are also investigated, taking die
length:jet length ratio as 0.5, but doubling each individual length. In addition, a die length:jet
length ratio of 0.25 is attempted, with a die length of two units. This helps to distinguish the
critical factor here to establish accurate solutions at the highest elasticity levels.

5.2. Stick-slip/drag flow (SSDF)

The more complex stick-slip/drag flow (SSDF) involves a pressure driven base flow at the inlet
with a superimposed drag flow on the inner boundary (wire) that has finite radius. The
remaining boundary conditions follow that of the previous stick-slip case. Figure 2(b)
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Figure 2. Schema for flow problems.
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Figure 3. SSF: mesh patterns.

illustrates the annular inlet velocity Vz, defined in Appendix A, as well as the governing
boundary conditions. The radial dimension of the moving wire is taken as 0.15 units.
Characteristic scales are taken for length, as inlet hydraulic radius R, and for velocity, as with
axisymmetric SSF. This leads to equivalent flowrates in both settings. Remaining dimension-
less quantities are jet length of 2.0 units, wire speed of 0.5 units and positions z1 and z2 of
−1.0 units and 2.0 units respectively. Here, the influence of drag flow may be analysed in the
absence of free surface deformation.

5.3. Die-swell flow (DSF)

The die-swell flow (DSF) consists of two regions, one encompassing the shear flow within the
die, governed by stick conditions at the boundary wall, and the other containing the extruded
jet flow, where slip conditions at the free meniscus surface apply. A schematic illustration of
the problem is provided in Figure 2(c), showing the inlet Poiseuille flow, channel length of
unity; geometric locations z1, z2, and jet length are identical to the case of SSDF. Scales apply
as for SSF. An initial mesh for die-swell instances is illustrated in Figure 13(a). In contrast to
SSF, this flow demonstrates the influence of free surface deformation. Longer geometries
follow, as above, in the case of SSF.
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5.4. Die-swell/drag flow (DSDF)

This combination of the drag effects of SSDF, with the swell of the DSF model is shown in
Figure 2(d). The inner boundary travels at the same speed as above with the SSDF of 0.5
units, and free surface boundary conditions remain as in the DSF case. Dimensionless
quantities, characteristic velocity and length scales remain as in the DSF case above, with inlet
annular Vz profile specified in Appendix A. Here, interest lies twofold; upon the introduction
of drag flow to DSF and the contrast between die-swell and stick-slip in the presence of drag
flow.

6. RESULTS AND DISCUSSION

6.1. SSF

The pressure and stresses for SSF are shown in Table I over a range of Weissenberg numbers.
The Newtonian results (We=0) are compared with the viscoelastic solutions of 0.25�We�1.
Radial velocities show little change for each We, with a 1 per cent increase at We=1, while
axial velocities remained unchanged. A sharp pressure increase with increasing We is observed
at the singularity, with a 16 per cent increase at We=0.25, rapidly building up to pressures
three times that of the Newtonian case. All stress results are reported as total stresses inclusive
of solvent contribution. Radial stresses display a highly localized exponential jump, reaching
Trr values ten times that for We=0. Shear stress values indicate a general variation of 60 per
cent while T�� stress values vary by 14 per cent, between Newtonian and viscoelastic fluids.
The maximum attainable level of We lim is 1.7 on short geometries, rising to 2.0 on the medium
length mesh and 2.2 on the longest mesh (see Figure 3). Largest extra-stresses are axial and
correspond to Weissenberg numbers between 0.25 and 0.5.

Following our separate mesh investigations of Reference [1], the refined mesh of 18×54
elements is used for all flow analyses covering Weissenberg numbers ranging from zero to

Table I. SSF: pressure and stress for various We.

We=0 We=1Solutions We=0.75We=0.5We=0.25

0.00min −3.92 −0.57 −0.01 −0.01P
15.8max 4.89 5.66 6.38 9.18

−1.95min −3.49 −1.94 −1.84 −1.78�rr

max 0.43 0.43 0.40 0.88 4.64

�rz min −7.23 −5.18 −4.53 −5.63 −4.56
4.47max 0.01 0.00 0.00 1.92

�zz min −1.07 −0.69 −0.57 −0.51 −2.79
19.930.940.143.710.7max

0.000.000.00 0.00min��� 0.00
0.540.50 0.400.43max 0.52
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unity (Figure 3(a)). In the Newtonian instance, the velocity vector plot of Figure 4(a) depicts
an initial Poiseuille flow changing to plug flow. The radial velocity contour plot gives the
formation of a peak below the singularity, the highest velocity of 0.11 acting in the centre of
the vortex. The axial velocity contour plot shows an increase at the top die wall, while the core
flow slows down as it approaches the die exit (Figure 4(c)). A uniform pressure distribution is
observed upstream of the die entry, tending to a negative singularity of −2.94 near the die
exist (Figure 4(d)). The radial extra-stress and shear stress contours of Figure 4(e) and (f)
represent negative stress concentrations at the die wall, with absolute minima at the singularity
of −3.06 and −6.43, respectively. In contrast, a much tighter distribution of axial extra-stress
occurs close to the singularity, with maxima of 10.7, as seen in Figure 4(g). The azimuthal
stress of Figure 4(h) reflects a localized concentration of 0.43 on the centreline at the die exit
station.

We now turn to results for SSF with the Oldroyd-B model at We=1. Radial velocity
profiles show a downstream distortion of the higher velocity region along the top boundary
after the singularity, with the maximum velocity of 0.12, still located at the centre of the die
exit flow (Figure 5(a)). The axial velocity contours of Figure 5(b) are much the same as for
We=0, except for a slight increase in the mid-velocity contour of 0.45. Figure 5(c) displays an
initial linear pressure distribution, this time with a highly localized banding of positive pressure
at the singularity point. The highest radial stresses (Figure 5(d)) are confined to the singularity
region, as with shear stress (Figure 5(e)) of equal order. A localized high shear stress value of
4.47 is observed at the singularity. Non-vanishing Trz persists further into the jet flow than in
the Newtonian case. Axial extra-stress contour values of Figure 5(f) are larger than those for
We=0. High axial stress arises at the top boundary, particularly beyond the singularity, where
stresses reach 19.9, almost double that for We=0. The T�� extra-stress contours of Figure 5(g)
for We=1 are generally distorted and shifted downstream of the die, although stress extrema
are more or less identical to Newtonian values.

The cross-channel upstream die and downstream jet radial velocity profiles for SSF and
We=1 are provided in Figure 6(a) and (b) respectively. Along the radial span 0�r�1, the
radial velocity increases initially, up to z=0.2 (into the jet region), after which point it drops
away. Also, the effect of the solution singularity is observed in the representation of the radial
velocity gradient in the die exist neighbourhood. The axial velocity profiles of Figure 6(c) and
(d) both show parabolic flow form, this time with maxima at the centre of the fluid. Upstream,
the axial velocity diminishes in magnitude as it approaches the die exit, causing a suppression
of the parabolic form. This effect is translated downstream (Figure 6(d)), where the parabolic
axial velocity profile levels out to an almost linear state at z=0.8. Stick-slip solutions for
Weissenberg numbers ranging from zero to unity, are compared in their departure from the
theoretical Newtonian solution in Figures 6(e)– (h), 7 and 8. A smooth parabolic radial
velocity Vr, of the cross-channel velocity profiles, is seen to occur with much higher velocities
achieved after the die exit than upstream (Figure 6(e) and (f)). The acuteness of the parabolic
Vr profile flattens out somewhat with decreasing Weissenberg numbers, approaching that of
the theoretical solution at We=0, where the difference between maximum Vr values is
approximately 4 per cent before the die exit, reducing to around 15 per cent in the jet region.
It should be noted here that the relative solution size of Vr is an order of magnitude lower than
Vz. Axial velocity (Vz) profiles upstream and downstream of the die are shown in Figure 6(g)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595



SIMULATION OF VISCOELASTIC FLOWS 557

Figure 4. SSF: short mesh, We=0.
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Figure 4 (Continued)
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and (h). Upstream profiles are parabolic, flattening out as maximum values appear near the
die centre region (Figure 6(g)). The downstream Vz profile is of more complex curvilinear
shape (Figure 6(h)). The We=0 profile correlates closely with that of the theoretical result, the
maximum difference from which occurs at the centreline of the fluid and ranges from
approximately 0.1 per cent upstream to 3 per cent downstream of the die. The Vr velocity
profiles of Figure 6(e) and (f) would appear to vary considerably between We values; however,
inspection of the scale difference between Vr and Vz results reveals axial velocity variation
twenty times greater than radial at the die centre. This difference is further magnified as the
flow enters the jet region.

Shear rate I2 profiles, where shear rate is represented as the second invariant of the rate of
strain tensor, are compared for a range of Weissenberg numbers (Figure 7). The shear rate

Figure 5. SSF: short mesh, We=1.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595



V. NGAMARAMVARANGGUL AND M. F. WEBSTER560

Figure 5 (Continued)
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peaks at the singularity region of the die-exit, and decay rates beyond the die become more
gradual with increasing We. The decline in maximum I2 from a value of 7.96 at We=0.25 to
6.46 at We=1 represents a drop of almost 25 per cent. Also, an undershoot in I2 is noted,
prior to the die exit at We of unity. This feature is not observed at earlier We values. Such
rapid adjustments in I2 surface values could signal the onset of flow instabilities.

The variation of pressure along the centreline of the die exit region for SSF is displayed in
Figure 8(a). For all cases, a linear decline in pressure occurs upstream of the die exit location,

Figure 6. SSF: cross-channel velocity profiles, short mesh.
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Figure 6 (Continued)

after which the pressure reduction slows quadratically to zero at a distance of 1.5–2.0 from the
die. There is close correlation with the theoretical result at the Newtonian limit, to within 5 per
cent. Departure from this position is noted, with pressure drop increasing with increasing We
from zero to unity. The normal stress invariant for various We is compared against the
theoretical solution in Figure 8(b). Parabolic profile patterns are observed for all solutions,
with minima close to the die exit in the jet region. Figure 8(c) shows the parabolic rise and fall
of the radial stress component, as it passes through the die exit with minimum difference
against the theoretical solution at We=0, represented by a percentage error at the peak values
of 4 per cent. The axial stress pattern of Figure 8(d) is almost a mirror reflection of the radial
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Figure 7. SSF: shear rate (I2) on top surface, short mesh.

version, the familiar parabolic stress profile reaches a minimum value of −0.84 for We=0, a
difference of approximately 4 per cent from the theory.

6.2. SSDF

Table II provides results for SSDF at various Weissenberg numbers, illustrating extrema of
pressure and stress, and departure from Newtonian values. Pressure and radial extra-stress
increase exponentially with increasing We, reaching maxima of 22.2 and 7.06, three and 15 times
greater than for the Newtonian case respectively. Maximum axial velocity Vz sustains a constant
level at 0.82 for all values of We, whilst maximum radial velocity Vr varies by around 2 per cent.
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Figure 8. SSF: line plot along axis of symmetry, various We, short mesh.

The same meshing as Figure 3(a) is employed for this flow instance up to We=1. The
velocity vectors of Figure 9(a) demonstrates initial annular flow changing to plug flow on exit
from the die. The radial velocity contours of Figure 9(b) are much the same as the stick-slip
case of Figure 5(a), while the axial velocity is seen to increase at the top boundary (Figure
9(c)), once the fluid clears the die, where it maintains a steady value of 0.46. The upstream
linear pressure profile (Figure 9(d)) of 9.58 decreases uniformly to the die exit, where a highly
concentrated build up is observed at the singularity, reaching a peak of 22.2, 40 per cent higher
than for pure SSF. A negative radial extra-stress persists throughout the flow (Figure 9(e)),
except for a positive stress pocket of 7.06 at the singularity. Shear stress over the length of the
top die wall remains negative until it reaches the singularity, where a dramatic jump in value
to 5.82 occurs, before decaying to zero at the top extrudate boundary (Figure 9(f)). Axial stress
Tzz at the lower boundary is understandably much higher than for the stick-slip problem
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Table II. SSDF: pressure and stress for various We.

We=0 We=0.25Solutions We=0.5 We=0.75 We=1

min −4.65 −0.25 −0.10P −0.26 −0.48
max 7.06 8.04 8.90 16.3 22.2

min −4.06 −2.34 −2.29�rr −2.21 −2.70
max 0.48 0.47 0.44 3.93 7.06

min −7.95 −4.83 −5.65�rz −7.04 −4.99
max 3.02 3.12 3.12 4.38 5.82

min −0.47 −0.58 −0.49�zz −0.42 −3.16
max 12.1 55.8 52.8 32.3 22.8

min 0.00 0.00 0.00��� 0.00 −0.01
max 0.31 0.29 0.26 0.24 0.23

(Figure 5(f)) due to the influence of the moving lower boundary (wire) at the die centre, as
depicted in Figure 9(g). However, extrema in axial stress of 22.83 and −3.16 still occur close
to each other in the singularity neighbourhood. In contrast to SSF, the maximum T�� stress of
0.23 (Figure 9(h)) has shifted upward away from the lower free boundary into the core flow.
This is a direct consequence of the additional drag force, imposed by the moving lower
boundary.

Figure 10 demonstrates the SSDF cross-channel velocity profiles for We=1. The radial
velocity profiles for half of the die, upstream and downstream of the die exit (Figure 10(a) and
(b)) illustrate the rapid build up, followed by gradual reduction of the radial velocity as it
passes through the die exit, accounting for the transition from parabolic to linear velocity
fronts. On comparing the axial velocity profiles of Figure 10(c) and (d), with the stick-slip
profiles of Figure 6(c) and (d), it is evident that the drag effects on the fluid have shifted the
parabolic shape of flow profiles cross-stream. Maximum velocities are suppressed by approxi-
mately 10 per cent for the SSDF cases, with the velocity profile shape converging to a virtually
linear shape at the end of the jet region (z=0.8).

Top surface shear rate I2 profiles are illustrated in Figure 11 for increasing We values from
0.25 to unity. This figure contrasts with the situation as reported in Figure 7. Here, larger peak
values are observed at the singularity at each We level over the stick-slip instance. The pre-die
exit undershoot now occurs at the earlier stage of We=0.75. Peak values adjust from 10.76 at
We=0.25 to 7.96 at We=1.0; a reduction of 26 per cent. There is a slight increase in I2

maxima at We=0.5 over that at We=0.25, before decreasing with further increase in We.
Comparison of various profiles of stress, velocity, pressure and stress invariant at We=1 are

made in Figure 12, between SSF and SSDF, midway across the top half of the die tube
(R=0.5). This location was selected to analyse results in core flow. The radial velocity
components at the die exit (Figure 12(a)) present parabolic profiles, whose maxima occur just
after entry into the jet region. SSDF has a considerably smaller peak than SSF (a difference
of 8 per cent) due to the suppressive effect on Vr of the moving boundary through the die. The
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axial velocity profile of Figure 12(b) reflects the opposite effect, but for the same reason, since
the wire pulls the fluid through the die at a higher axial velocity. Figure 12(c) gives a 27 per
cent increase in SSDF inlet pressure against that of SSF. The stress invariants of Figure 12(d)
express a general ‘wave’ shaped profile. The initial invariant for SSF is at least double that for

Figure 9. SSDF, We=1.
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Figure 9 (Continued)

SSDF, being due to the dominant influence of the invariant’s Tzz component. This is reflected
in Figure 12(g), where Tzz for SSDF is less than half that of SSF, due to the effect of the
travelling wire aiding the fluids movement, therefore reducing internal axial stress. The radial
extra-stress values (Figure 12(e)) give an almost opposite interpretation, with the SSDF case
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Figure 10. SSDF: cross-channel velocity profiles, We=1.

providing the dominant stress and peak values downstream of the die, approximately 40
per cent higher than for SSF. These high peak values are encountered when the fluid
becomes free of the confines of the die wall. The shear stress Trz profiles of Figure 12(f)
demonstrate a gradient climb to vanishing Trz at the far end of the jet region. This positive
climb, and the fact that the SSDF is almost double SSF at the inlet, is due to the
boundary influence upon the shear stress. As can be anticipated from Figure 12(h), T��

stress profiles over the die exit reflect a rapid increase in stress as the flow by-passes the
singularity. The moving boundary of SSDF assists in dampening the T�� stress by approxi-
mately 27 per cent (at the peak value).
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Figure 11. SSDF: shear rate (I2) on top surface.

6.3. DSF

The initial mesh used for DSF is illustrated in Figure 13(a). The velocity vector profile of
Figure 14(a) reveals the gradual change from an inlet Poiseuille flow to an outlet plug flow.
The radial velocity contour plot gives the typical peak formation at the die exit as for the other
flow types, with maximum Vr of 0.20 occurring at the die centre (Figure 14(b)). The axial
velocity contours of Figure 14(c) demonstrate a steady drop from 1.01 at the upstream die
centre to 0.1 near the die wall boundary. Extrema in pressure and stress are recorded in Table
III for DSF and increasing We. An extremely localized pressure pocket prevails at the
singularity, reaching a peak value of 32.9 (Figure 14(d)), which is two and half times higher
than for the SSF case. The radial extra-stress plot of Figure 14(e) also reflects a highly
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concentrated stress zone at the singularity of 12.6, over three times as severe as the stick-slip
case of Figure 5(d). In contrast to the previous stick-slip (Figure 5(e) and (f)), there is upward
distortion towards the free surface, yet similar trends in shear stress and axial extra-stress
contour plots can be established (Figure 14(f) and (g)). Nevertheless, at the singularity, shear
stress for die-swell reaches twice that for SSF. Figure 14(h) presents the typical build up of T��

stress at the centre of the die, reaching a maximum of 0.59 within the jet region.
Cross-channel velocity profiles for die-swell solutions at We=1, in radial and axial

component forms, are provided in Figure 15(a)– (d). The upstream and downstream radial
velocity profiles for die-swell exhibit similar behaviour to that of SSF (Figure 6(a) and (b)),
with the exception of a slightly stronger upstream velocity profile (approximately 30 per cent

Figure 12. SSF and SSDF: line plot along horizontal line R=0.5, We=1.
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Figure 12 (Continued)

increase) at the die exit in the die-swell instance. The downstream flow exhibits a considerable
increase in maximum radial velocity (compared with that for SSF), of almost 40 per cent
before trailing off to a maximum velocity of 0.068 at z=0.8 beyond the die. The external free
surface swell is obviously responsible for this increase. The difference between the die-swell and
the previous SSF is less apparent in the axial velocity Vz profiles (Figure 15(c) and (d)) than
for the former Vr component. The only difference worthy of note is in the die-swell jet region,
where for each recorded reading a slightly weaker axial velocity occurs at the centre of the
fluid. Figure 15(e)– (h) record the DSF solutions with increasing We, through cross-channel
radial and axial velocity profiles for positions z= −0.4 and z=0.4 upstream and downstream
of the die. Weissenberg numbers range from zero to unity, the limit for steady solutions. The
parabolic radial velocity profiles increase in magnitude with decreasing We in the upstream
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Table III. DSF: pressure and stress for various We.

We=0 We=0.25Solutions We=0.5 We=0.75 We=1

min −7.10 −1.90 −1.22P −0.95 −0.68
max 4.94 5.59 14.5 24.7 32.9

min −4.38 −1.70 −1.24�rr −0.69 −0.89
max 0.52 2.25 3.52 7.54 12.6

min −9.01 −4.00 −8.66�rz −6.67 −4.05
max 0.94 11.4 8.11 7.96 9.48

min −1.03 −0.71 −0.59�zz −6.41 −5.96
max 15.1 40.5 23.8 20.8 19.6

min 0.00 0.00 −0.01��� −0.01 −0.01
max 0.52 0.49 0.51 0.53 0.59

section. On exit of the die the converse is true (Figure 15(e) and (f)). Parabolic profiles of the
upstream axial velocity are observed in Figure 15(g) that vary little in velocity maxima over the
full range of Weissenberg numbers. As the axial velocity enters the jet region (Figure 15(h))
there is a decrease in maximum velocity of about 30 per cent. Variation between each We
profile is more pronounced in this component, with the greatest variations near the free
surface, where the flow disturbance due to the singularity is most prominent.

The top boundary shear rate plots of Figure 16 show an initial inlet constant value of 1.4,
increasing exponentially upon nearing the singularity to a peak of 14.0 for the lowest We value
of 0.25. This peak can be seen to first marginally increase to 12.3 and then diminish with
increasing magnitude of We, to an ultimate peak value of 7.19 at We=1. Comparing DSF
with the SSF case of Figure 7, a sharper reduction in post-die shear rate is observed for DSF;
as well as more elevated peaks in shear for We�1. Oscillations in profile are apparent beyond
We=0.5 as the singularity is transcended. I2 pre-die exit undershoot is observed at this stage
and subsequently; earlier therefore in We than for SSF. A post-die exit minimum also arises
beyond We=0.75, not present in stick-slip. Oscillation in I2 at We=1 could indicate the
imminent onset of instability.

The die-swell pressure distribution along the axis of symmetry for various Weissenberg
numbers is shown in Figure 17(a), and follows those observed for SSF (Figure 8(a)).
Comparing with the stick-slip case, a substantial increase in the normal stress invariant minima
of 15 per cent occurs for We=0 (Figure 17(b)). The radial extra-stress component profiles
display some dramatic behaviour, with stress increasing to a peak of 0.6 with increasing
Weissenberg number (Figure 17(c)), opposite to that of the stick-slip case. A tighter formation
of curves for the die-swell axial extra-stress is observed in the jet region (Figure 17(d)) above
that in the die, with the minimum Tzz value reaching −1.0, a reduction of about 12 per cent.

Comparing SSF with DSF at the mid-top half of the tube (R=0.5, We=1) over the die exit
region reveals some marked differences. The radial velocity variations of Figure 18(a) show the
familiar shaped profile of Figure 12(a) for SSF. The flow swelling characteristics of the DSF
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Figure 13. DSF: mesh patterns.

are responsible for the 23 per cent increase in Vr (comparing with SSF). Understandably, the
radial increase in diameter for the DSF as it enters the jet region, would cause a corresponding
reduction in axial velocity. The reduction in Vz to 60 per cent that of SSF is apparent in Figure
18(b). The external fluid volume increase for DSF also aids the reduction in pressure drop
beyond the die (Figure 18(c)). Upstream normal stress invariant characteristics remain more or
less the same for SSF and DSF. However for DSF, the more extreme drop of invariant on
exiting the die (Figure 18(d)) is mostly due to the reduction in Vz within this region. This effect
is also observed in the stress component Tzz that dominates the invariant (Figure 18(g)). The
radial stress Trr profiles over the die exit are shown in Figure 18(e). Again, the swelling
phenomena of DSF results in a dramatic peak in Trr, approximately 45 per cent higher than
that of SSF. Reduction in shear stress Trz as the flow exits the die is similar for both flow
types. The slightly faster reduction in Trz for DSF is generally due to the more rapid kinetic
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Figure 14. DSF: short mesh, We=1.
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Figure 14 (Continued)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595



V. NGAMARAMVARANGGUL AND M. F. WEBSTER576

energy loss from the swelling effects (Figure 18(f)). The T�� parabolic shape and peak (see
Figure 18(h)) on exiting the die can mainly be attributed to the radial velocity behaviour,
though the axial velocity has some influence also. Hence, the reason for the 30 per cent
increase in DSF stress at z=0.7.

Figure 19(a) plots the centreline velocity as a function of axial distance from the die exit in
contrast to the literature. The velocity profile result for the Newtonian STGFEM follows
closely the results of a similar FEM Newtonian study provided by Casewell and
Viriyayuthakorn [5]. The Newtonian STGFEM solution is seen to have a less steep velocity
profile at the transition from Poiseuille flow to uniform plug flow, in contrast to those for
either a Maxwell [5] or Oldroyd-B (STGFEM) fluid model. When contrasting to the literature
(in Figures 19–21 and Table IV), results are charted against Deborah number by convention,
where for current scales De=2We. The pressure distribution of the Newtonian jet flow along

Figure 15. DSF: cross-channel velocity profiles, short mesh.
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Figure 15 (Continued)

the centreline of the fluid for the STGFEM is given in Figure 19(b). The comparison with the
Maxwell and Oldroyd-B fluid models clearly distinguishes the influence that viscoelasticity has,
causing an increase in pressure drop. The normal stress invariant trT−3T�� along the axis of
symmetry in the die is given in Figure 19(c); the shift from and return to the zero level over
the die exit region is apparent. With elasticity, there is a downstream shift of the minimum
invariant values, a characteristic feature of exit flows. Again, there is close correspondence
between Maxwell and Oldroyd-B profiles, confirming present solution accuracy.

Figure 20(a) shows the entry pressure loss as a function of Deborah number. The entry
pressure loss is measured as the dimensionless Couette correction value Cen, defined as

Cen=
(�p−LU×�pU−LD×�pD)

(2�w)
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Figure 16. DSF: shear rate (I2) on top surface, short mesh.

The terms LU and LD denote the upstream and downstream die lengths, while �pU and �pD

are the associated pressure gradients for the fully developed upstream and downstream flows,
respectively. The downstream wall shear stress in the die is represented by �w, and �p is the
total pressure loss between the die entry and exit. The entry pressure loss for the three fluid
models, namely PTT [42], Oldroyd-B (this work) and Maxwell fluids [5], are compared in
Figure 20(a). For De values up to approximately 0.2, the Couette correction decreases in all
cases. For higher values of De a monotonic increase in Couette correction occurs for the PTT
model, as opposed to a steady decrease for the Oldroyd and Maxwell fluid. The different
trends observed for PTT results on entry pressure loss may be attributed to the variations in
extensional and viscous behaviour of this model. Experience from experimental studies would
indicate that Cen increases with increasing De, generated via flow rate increase.
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Figure 17. DSF: line plot along the axis of symmetry, short mesh.

The exit pressure loss, an alternative quantifiable factor, is represented by the dimensionless
Couette correction factor Cex, defined as:

Cex=
(�p−LU×�pU)

(2�w)

In Figure 20(b), exit pressure loss is compared for three fluid models over 0�De�1; a
Maxwell fluid [5] and two Oldroyd-B fluids [8] with partial viscosity ratios of �1/�2=8. Higher
exit pressure losses occur for lower viscosity ratios. In this case, exit pressure loss consistently
rises with increasing De.
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Comparisons are made in Table IV between the theory of Tanner [4] and numerical
solutions of Caswell and Viriyayuthakorn [5], Bush et al. [6], Crochet and Keunings [7] and the
STGFEM solution of this paper. Table IV(a) covers results up to De of unity, whilst on longer
geometries, Table IV(b) provides values for De beyond four.

Figure 21(a) demonstrates STGFEM die-swell profiles corresponding to the location for the
free surface over the jet region, using an Oldroyd-B model. As anticipated, maximum swell
corresponds to the instance with the largest Weissenberg number. Figure 21(b) catalogues the
swelling ratio against the literature, including theoretical and numerical solutions for increas-
ing Deborah number. The STGFEM results are observed to adhere closest to the results of
Crochet and Keunings [8]. The theory of Tanner [4], is upheld for De�1.5, beyond which

Figure 18. SSF and DSF: line plot along horizontal line R=0.5, We=1, short mesh.
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Figure 18 (Continued)

there is departure. This is taken as a strong indicating factor as to the high quality of the
present solutions. It is noted, that with longer jet geometries, De lim is increased to values
approaching four. The key factor here is the jet length, once a die length has been specified
that satisfies fully-developed inlet flow conditions. At die length:jet length of 0.5, De lim is 2.0
for the short mesh and 3.0 for the medium mesh. For a ratio of 0.25, De lim is increased to
beyond 3.0 (to 3.2). See Figure 13 for the longer mesh pattern details and Figure 21 for swell.

6.4. DSDF

Extrema for pressure and stress in the case of DSDF are presented in Table V for a range of
Weissenberg numbers from zero to a limiting value of 0.75.
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Figure 19. DSF: line plot along the axis of symmetry for Newtonian fluid, Maxwell fluid and Oldroyd-B
fluid (De=1), short mesh.

The top surface, I2 profiles of Figure 22, reflect those of both DSF and SSDF combined.
Peak values are still further elevated above those for DSDF (by 50 per cent), ranging from 16.5
for We=0.25 to 9.48 for We=0.75; representing a reduction of 42 per cent with We. Pre-die
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Figure 20. DSF: pressure loss, short mesh.

exit undershoot is apparent beyond We=0.5. Post-die exit recovery of I2 follows similar trends
to that observed for SSDF. As before, there is a minor increase of I2 peak value from
We=0.25 to 0.5, prior to the subsequent decrease with increasing We.

SSDF and DSDF profile comparisons are made in Figure 23(a)– (h), as before mid-way over
the top half of the die tube, R=0.5, and for We=0.75. Comparing radial velocities at the die
exit reveals the typical profile shape, with the DSDF peak Vr value being 14 per cent higher
than for SSDF, due to the influence of die exit swell (Figure 23(a)). The axial velocity
variations over the die exit show an almost linear fall in Vz immediately after the die, followed
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by a gradual transition to a plug flow (Figure 23(b)). The swelling action to the extrudate
results in a lower final fluid velocity, where that for DSDF is approximately 20 per cent less
than for SSDF; this is due to the increased cross-sectional volume. Pressure profiles for both
flow types are included in Figure 23(c). Pressure throughout the domain for DSDF is
consistently lower than SSDF, although the general profile shape is almost identical. This

Figure 21. DSF: die swell and swelling ratio.
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Figure 21 (Continued)

phenomenon may be attributed to the influence of die-swell. Figure 23(d) shows almost
identical stress invariant profiles throughout the die exit region; the only exception is within
the zone of maximum die-swell, where an increase in negative invariant of up to 25 per cent
occurs for DSDF. The same effect is present in the dominant Tzz stress component of the
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Table IV. (a) Swelling ratio for DSF, 0�De�1; (b) swelling ratio for DSF, 1�De�4.5.

ModelInvestigator De

0 0.25 0.33 0.5 0.67 0.75 1

(a)
Theory 1.131 1.134 1.137Tanner [4] 1.146 1.157 1.163 1.186

Caswell and Maxwell 1.131 1.125 – 1.161 – 1.225 1.325
Viriyayuthakorn [5]

Maxwell 1.134 1.142 – 1.171Bush et al. [6] – 1.198 1.221
UC Maxwell 1.126 – 1.129Crochet and Keunings [7] 1.147 1.172 – 1.217
Oldroyd-B 1.130 – – 1.162 –STGFEM – 1.212

De

1 1.5 2 3 3.2 4 4.5

(b)
Tanner [4] Theory 1.187 1.242 1.301 1.417 1.440 1.523 1.572

Oldroyd-B 1.217 –Crochet and Keunings [8] 1.343 1.595 – 1.817 1.921
Oldroyd-B 1.219 – 1.371Bush [35] – – –

Clermont and Normandin Oldroyd-B 1.210 – 1.380 1.470 – 1.530 –
[36]

STGFEM Oldroyd-B 1.212 1.268 1.354 1.593 1.680 – –

invariant in Figure 23(g). The radial extra-stress component profiles of Figure 23(e) follow the
anticipated trends, with the die-swell influence of the DSDF, resulting in a major stress
increase of 30 per cent at z=0.55. The shear stress of Figure 23(f) illustrates the gradual
decline in Trz as the fluid exits the die. The DSDF shear stress outside the die tends to sustain
a presence, larger in contrast to that for SSDF, due to the decreased internal stressing that

Table V. DSDF: pressure and stress for various We.

We=0.75Solutions We=0 We=0.25 We=0.5

P −0.75−1.35min −2.69−8.40
max 6.79 8.78 21.3 42.1

−1.88min�rr −5.56 −2.51 −3.05
20.7max 0.58 0.84 6.18

−517−8.37�rz −5.12−10.4min
max 3.00 4.50 12.4 12.8

�zz min −0.89 −3.44 −9.47 −11.06
29.725.223.116.7max

−0.01��� min −0.01 −0.02 −0.01
0.340.340.390.38max
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Figure 22. DSDF: shear rate (I2) on top surface.

results from the swelling. Understandably, the T�� stress profile of Figure 23(h) for DSDF is
25 per cent higher than that for SSDF, again due to the extrudate swelling.

Similarities and differences between DSF and DSDF at the die exit and jet region are
investigated in Figure 24 with We=0.75, for the upper half of the die along the horizontal line
R=0.5. This comparison highlights the influence of the additional drag flow component upon
extrusion flow, where the free surface finds its own location. The parabolic radial velocity
profiles of Figure 24(a) show peak values in the area, just downstream of the die exit. DSDF
reaches a peak of 19 per cent lower than that of DSF, due to the suppressive effects on Vr by
the axially moving boundary (travelling wire), which is also responsible for maintaining the
upstream axial velocity of DSDF at a level approximately 5 per cent higher than for DSF
(Figure 24(b)). The increased axial upstream velocity of DSDF also results in a higher internal
pressure before the die exit (Figure 24(c)). The stress invariant profiles of Figure 24(d) display
upstream DSF invariant maxima of 1.3, 60 per cent higher than that of DSDF. This is a result
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of the dragging effect of the moving boundary aiding the fluids movement inside the die,
therefore reducing axial extra-stress, the dominant stress component of the invariant (Figure
24(g)). The drag imposed by the moving boundary has an opposite effect on the radial
extra-stress profiles of Figure 24(e), with DSDF stresses 32 per cent higher than those for
DSF, because of the larger swell of the extrudate. For both flow types, a non-monotonic
climb to vanishing shear stress is observed as the fluid exits the die (Figure 24(f)); as above,
the drag flow instance sustains a larger shear stress. As expected, the T�� stress profiles of
Figure 24(h) give a smaller maxima than in DSDF, approximately 38 per cent less than for
DSF.

Figure 23. SDSF and DSDF: line plot along horizontal line R=0.5, We=0.75.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 539–595



SIMULATION OF VISCOELASTIC FLOWS 589

Figure 23 (Continued)

7. CONCLUSIONS

This study has provided an analysis of steady free surface flows for an Oldroyd-B fluid using
a Taylor–Galerkin/pressure-correction method with consistent streamline upwinding and
velocity gradient recovery. Various cases studied have contrasted stick-slip to die-swell flows.
In addition, a superimposed drag flow component to each class of flow has facilitated further
comparison. Our solutions for SSF agree to within O(1 per cent) with the theoretical solution
of Trogdon and Joseph [3] for Newtonian flow. Swelling ratios in DSF compare favourably
against both theory and numerical solutions for increasing We. Present results are observed to
adhere to the theory of Tanner [4] up to De of 1.5. The limiting value of We for converged
solutions in stick-slip instances is 1.7 for short geometries, 2.0 on medium geometries and 2.2
for long geometries. Equivalently, converged solutions for DSF are observed for Weissenberg
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numbers ranging from zero to a limit of unity on short geometries, increasing to 1.6 on longer
geometries. This compares favourably with the literature. It is noted that, longer jet lengths are
crucial to achieve higher limiting elasticity number solutions.

In the comparisons for stick-slip flow, with and without drag flow, the effect of the
additional drag component gives rise to larger values of Vz, pressure, Trr, and Trz than would
otherwise be the case. In contrast Vr, Tzz and T�� are reduced. This response also holds for
die-swell and DSDF cases. For SSDF, the upstream linear pressure profile decreases uniformly
tending towards the die exit, where a highly concentrated build up is observed at the
singularity, reaching a peak value 40 per cent higher than for pure SSF. The maximum T��

stress component has shifted upward away from the lower free boundary into the core flow.
Axial stress Tzz at the lower boundary is much higher than for the SSF. Tzz for SSDF is less
than half that of SSF, so that drag flow and increasing elasticity reduces axial stress interior
to the domain.

Figure 24. DSF and DSDF: line plot along horizontal line R=0.5, We=0.75.
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Figure 24 (Continued)

For DSF, comparison of Newtonian results against those for Maxwell and Oldroyd models
clearly distinguishes the influence that viscoelasticity has, causing an increase in pressure drop.
With elasticity, there is a downstream shift in minimum stress invariant a characteristic feature
of extrudate flows. Correspondence between Maxwell and Oldroyd profiles provides close
agreement, confirming present solution accuracy. For We values up to approximately 0.2, the
Couette correction entry pressure loss decreases in all cases. Observations confirm that for higher
values of We, a monotonic increase in this Couette correction factor occurs for a PTT model,
as opposed to a steady decrease for the Oldroyd and Maxwell fluids. Higher exit pressure losses
occur for lower viscosity ratios and this factor consistently rises with increasing We.

We point to the particularly effective new free-surface location procedure adopted, herein, the
pressure-drop/mass balance scheme. This, in conjunction with longer geometries, has provided
more stable and accurate swelling predictions, at higher levels of elasticity than would otherwise
have been the case.
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At the singularity zone for DSF, a localized pressure pocket emerges which is two and a half
times larger than for SSF cases; Trr trebles and Trz doubles over SSF. The extrudate in DSF
gives rise to larger values of Vr, Trr, Trz and T�� in contrast to SSF. In addition beyond the die,
the extrudate is responsible for a decrease in Vz, pressure, and Tzz. This is again true when drag
flow is incorporated within this die-swell setting.

The trends in top surface I2 profiles rather symbolize the differences observed between the
four flows studied. Peak I2 values on top surfaces correspond to die-exit location. Superim-
posed drag flow induces increase in I2 maxima and sustains post-die exit recovery. DSF also
elevates I2 maxima above stick-slip alternatives. Pre-die exit undershoots are noted in all flows
at the larger values of We, occurring earlier in We for DSF over stick-slip counterparts, and
are slightly more prominent in drag flow instances. Post-die exit local minima in I2 arise for
DSF at the larger end of the We value range; these become elongated and flatten out with the
additional drag flow component. Oscillations in I2 profiles, particularly pre-die exit, could be
taken as indicators of imminent onset of instability.

APPENDIX A

To derive an annular inlet Newtonian drag flow profile, we follow Bird [44] and use a
non-dimensional equation for annular pressure-driven flow,

Vz(r)=
Pb2

4�L
�

1−
�r

b
�2

+
1

ln(a/b)
��a

b
�2

−1+
4�LVwire

Pb2

n
ln
�r

b
��

(A.1)

with variables of viscosity �, length Z1Z2 (Figure 2(b) or (d)) L, pressure drop between inlet
and outlet P, wire speed Vwire, inner annular radius a and outer radius b.

Subsequently, we may derive the flowrate at inlet and relate this to pressure drop, via

Q=2�
� b

a

rVz(r) dr (A.2)

Hence, once flow rate Q is prescribed (say from an outlet plug or free jet flow), we may
evaluate the pressure drop from the constant term, Pb2/4�L, utilizing Equation (A.1) for Vz(r)
within Equation (A.2).

In our present study for comparison purposes, we have recourse to the Newtonian
streamfunction solution for axisymmetric SSF, as developed in the article of Trogdon and
Joseph [3]

Case z�0:


(r, z)

=
r2

4
− �

�

m=1

1
qm

2 B−(−iqm)
rzJ1(rqm)

J0(qm)
e−zqm+ �

�

m=1
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��−iqm

d
d�

� i
�2B−(�)

n rJ1(rqm)
J0(qm)

e−zqm
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Case z�0:


(r, z)=r2�1
2
−

r2

4
�

+2R
� �

�

m=1

B+(ipm)ezpm

pmJ1
2(pm)

[rJ0(pm)J1(rpm)−r2J1(pm)J0(rpm ]
�

where

B+(�)= −
1
4

	
�

n=1

(1+ (�/�n))(1− (�/�n))
(1+ (�/iqn))2

and

B−(�)= 	
�

n=1

(1− (�/�n))(1+ (�/�n))
(1− (�/iqn))2

Jk(x) is defined to be a Bessel function of the first kind, of integral order k expressed in
series form as

Jk(x)= �
�

n=0

(−1)n

n !(k+n)!
�x

2
�k+2n

where

qn�
�

4
(4n+1)−

3
2�(4n+1)

, pn=Zn+�n, n=1, 2, 3, . . .

Zn=
1
2

(�n−�n)+
1
4

i(2 ln 2�n+�n
2), �n= (2n+1)�

�n=
ln 2�n

�n

, �n= −
F �(Zn)
F(Zn)

, F(x)=xJ0
2(x)−2J0(x)J1(x)+xJ1

2(x)

�̄n is complex conjugate of �n and �̄n= − i� pn.
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